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Abstract

Advances in computer and control technology offer the opportunity for task-offfoad aiding in
human-machine systems. A task-offload aid (e.g., an autopilot, an “intelligent” assistant) can be
selectively engaged by the human operator to dynamically delegate tasks to an automated system.
Successful design and performance prediction in such systems requires knowledge of the factors
influencing the strategy the operator develops and uses for managing interaction with the task-offloa
aid. We present a model showing how such strategies can be predicted as a function of three task
context properties (frequency and duration of secondary tasks, costs of delaying secondary tasks)
and three aid design properties (aid engagement and disengagement times, aid performance relative ¢
human performance). Sensitivity analysis indicates how each of these contextual and design factors
affect the optimal aid usage strategy and attainable system performance. The model is applied to
understanding human-automation interaction in lahoratory experiments on human supervisory contre
behavior. The laboratory task allowed subjects freedom to determine strategies for using an autopilc
in a dynamic, multi-task environment. Modeling results suggested that many subjects may indeed
have been acting appropriately by not using the autopilot in the way its designers intended. Althoug|
autopilot function was technically sound, this aid was not designed with due regard to the overall
task context in which it was placed. These results demonstrate the need for additional research on
how people may strategically manage their own resources, as well as those provided by automation,
in an effort to keep warkload and performance at acceptable levels.



Introduction

It has long been recognized that measures of individual task performance are insufficient to predic
overall human performance in multi-task human-machine systems. Many human performance
limitations concern, not difficulties associated with performing any single task, but rather constraints
on a person's ability to meet multiple, possibly concurrent task demands. As a result, a great deal of
research has been directed toward understanding time-sharing (e.g., Wickens, 1984; 1987; Navon
and Gopher, 1979) and serial task selection and switching (e.g., Senders, 1964; Moray 1986).
Quite often, psychological constructs (e.g., workload, resources) have been proposed to describe
and measure the performance limitations which come into play when a person manually attempts to
do many things at the same time. '

Due in part to these limitations on human performance, aids have been introduced into a variety of
human-machine systems to allow the operator to selectively offload tasks to automation. While some
of these aids have reduced workload and improved performance, in other cases automation has not
been so successful. A number of factors must be taken into consideration when attempting to predict
the effects of introducing aids into the operational environment. One issue of great impornance is the
strategy the operator develops for managing interaction with an aiding device.! Human supervisory
controllers have the capability, and often the freedom, to strategically manage their interaction with
automation in an effort to keep both workload and system performance at acceptable levels. Asa
result, knowledge of the factors iﬁﬂucncing strategy selection is required to predict the system-level
effects of introducing operator aids. Unfortunately, there is a shortage of modeling techniques
capable of predicting strategic behavior in human-automation interaction. However, unless the
psychological constraints on the design of automation are at least as well articulated as are the
technological constraints and opportunities, the real potential for technologically-driven, rather than
user-centered design, is only made more likely.

The present research is an attempt to identify features of both aid design and task context that
influence the strategy an operator will develop for interacting with one particular class of automated
systems. The current focus is on the design and use of task-offload aiding. Task-offload aids (e.g.,
an autopilot in an aircraft, cruise control in an automobile) can be selectively engaged by the operator
to dynamically offload specified tasks to an aiding device. In complex technological systems, the

10r, the strategy developed and mandated by an organization. The techniques presented in this paper
for specifying appropriate aid usage strategies are relevant to both the individual controller as well as
to an organization concerned with developing procedures for human-automation interaction.
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rationale behind such aiding may be to achieve the potential economic benefits associated with aid
performance, to reduce the need for time-sharing and task switching, or to free the operator’s
resources to pursue long range planning or decision-making. In such systems the operator has
responsibility for engaging, supervising, and disengaging the aiding system. In addition, the
operator typically retains the ability for direct manual control when deemed appropriate. Thus, unlik:
passive automation (e.g., automatic transmission in an automobile) task-offload aiding requires the
operator to develop and implement a strategy which specifies mode of control (manual vs. automatic)
based on an assessment of task demands and performance objectives.

One set of factors which determine whether task-offload aiding will be beneficial are the design
features of the aid itself. Of these design features, perhaps those recieving most attention from the
engineering community concern the technical performance characteristics of the aiding device. This
focus is appropriate, for no matter how much care is given to the human factors of automation
design, the fact remains that high levels of technical perfarmance and reliability are necesary
attributes of any automated system considered for the operational environment. However, aid design
features other than performance also may critically influence the overall contribution of automation to
system effectiveness. For example, the time (and most likely the effort) required to program,
engage, and disengage a task-offload aid are likely to influence the strategy developed by the operator
to govern aid use. A computer, for example, can perform a given multiplication millions times faster
than can a person, but the time and effort required to write a program to multiply 28 x 34 mitigates
any speed advantages relative to performing the multiplication by hand. If an operator perceives that
the potential benefits of an aid are similarly outweighed by engagement and disengagement burdens,
the aid may go unused. Thus, dimensions of aid design concerning both performance and the
control interface are likely to influence strategy development and resulting system performance.

However, it can be expected that aid design dimensions only partiaily determine how operators
will come to interact with task-offload automation. An additional set of issues, sometimes given
insufficient attention, concern the overall task context in which the aid is deployed. In this paper,
task context is taken to mean the frequency, duration, and criticality of "secondary” tasks which
divert the operator’s attention from the "primary"” control task. By primary task, we mean a demand
for ongoing or high frequency control activity which the operator may choose to meet with either
manual or automatic control. By secondary task, we mean an intermittent or low frequency demand
for typically discrete control activity that would normally require a diversion of operator attention
from the manually performed primary task. Features of the both task context and aid design most
likely interact to produce different strategies for best using an aiding system. For example, if
secondary task duration is long with respect to aid programming and engagement time, one might



expect that it would be best to engage an aid to perform the primary task before turning attention to
the secondary task. On the other hand, if programming time and engagement time is long, or delays
in initiating the secondary task have high cost, an operator might deem it best to let an aid go unused
and to find some other strategy for coping with multi-task demands.  *

In order to gain insight into these issues, a modeling approach was developed to predict strategy
development and estimate system performance as a function of both aid design and task context.
Three aid design parameters (aid engagement and disengagement times, aid performance relative to
human performance) and three task context parameters (frequency and duration of secondary tasks,
costs of delaying secondary tasks) are represented in the model. When applied to a particular task
environment, the model identifies an optimal policy for aid use and also estimates maximum
attainable system performance with the optimal policy. Sensitivity analysis can be used to measure
the effect of varying design and context parameters on the resulting optimal policy and attainable
system performance. One use of the model would be the partial specification of aid design
parameters given a task context. Thus, if the desigger would like to ensure that an aid could be used
effectively as a task-offload device, minimal performance and setup time parameters for aid design
can be estimated. This modeling approach could also be used to assess the feasibility of introducing
an existing aid into a new task environment, or to determine effective strategies for using newly
introduced aiding systems.

The modeling approach is presented and described within the context of a laboratory study which
allowed subjects freedom to determine strategies for using an autopilot in a multi-task environment.
The results of this study motivated the present analysis as it was found that subjects did not use the
autopilot in the manner in which its designers intended and predicted. Nevertheless, modeling and
sensitivity analysis demonstrated that many subjects may indeed have been acting appropriately by
using (and in some cases not using) the aid in unexpected ways. This aiding system was apparently
not designed with due regard to critical features of the overall multi-task context. It is hoped that the
present study contributes to aid designs which are not only technically sound, but also sensitive to
features of the operational contexts in which they are deployed.

Experimental Task
The approach for modeling human-automation interaction was motivated by experiments on

human performance in a laboratory simulation of a light helicopter supervisory control task. The task
required either oxie-person or two-person crews to pilot a "scout” helicopter through a simulated 100



square-mile partially forested world to discover cargo and engage enemy craft during each 30 minut
session. The experimental apparatus, configured for a two-person crew, is shown in Figure 1. Bo
the map display (on the left) and the pilot's display (on the right) provided information useful for
piloting the scout. The map display showed the entire world in a top-down format. The pilot's
display showed a 100-degree pie-shaped visual angle of the terrain within 2000 feet in front of the
scout. Both manual (joystick) and autopilot control of the scout helicopter were available.

The autopilot was activated by first entering a waypoint by positioning a cursor on the map
display with the control stick shown in the center of Figure 1. Pressing a pushbutton then activated
pathfinding mechanism that automatically avoided trees and guided the scout to the indicated
waypoint. Multiple successive waypoints for the scout could also be programmed. The autopilot
was available to the crews at all times but was inferior to maximally attainable manual control
performance. The maximum speed of the the scout under autopilot control was 75% of the
maximum speed under manual control. This speed restriction was partially due to computations
necessary to perform on-line pathfinding through she forested world. In addition, the scout
consumed fuel at a higher rate under autopilot control than under manual control. It was generally tc
the crews’ advantage to maintain scout movement and to conserve fuel. Thus, whether manual or
automatic control was most effective was determined in part by the skill of the pilot to manually
control the scout. It must be pointed out that the scout helicopter had inherently stable dynamics to
make the piloting task managable for subjects without extensive training. Thus, a diversion of
attention from the piloting task resulted only in the scout coasting to a stop at constant altitude.

Insert Figure 1 about here

Crews also had supervisory control over four "friendly" helicopters which were used to assist the
scout in mecting'mission goals. Friendly craft were commanded by constructing strings of action
commands via a text editing terminal specially configured for the experiment, shown at the left side
of Figure 1. Most of the text editing sessions dealt with low priority commands to the friendly craft,
such as instructions to load cargo or search regions of the world. A minority of the editing sessions
were of high priority due to unexpected emergency conditions that required immediate crew attentior
In these situations, delays in entering an appropriate command increased the probability of losing the
use of a friendly craft for the remainder of the current mission.



In the one-person crew condition, one subject was responsible for controlling both the scout and
the friendly craft. In the two-person condition, one subject, called the pilot, controlled the scout,
while the second subject, called the navigator, controlled the four friendly craft. Crews were
instructed to gain as many points as possible during each mission by engaging enemy craft and by
finding, loading, and unloading cargo at home base. Experiments were performed to compare one-
versus two-person crew performance to provide data to support psychological modeling. Five one-
person and five two-person crews were used. Subjects were male young adults taken from a
university population. For a more complete task description and a comparison of one- and two-
person crew performance see (Kirlik, Plamondon, Lytton, Miller and Jagacinski, 1991), and for a
process model of crew behavior see (Kirlik, Miller and Jagacinski, 1991). The present paper
considers only aspects of the task and crew behavior related to autopilot use.

Strategies for .Autopilot Use

The present analysis considers only data from the five one-person crews. In the two-person
condition the pilot was dedicated to scout control and therefore did not need to divert attention from
the piloting task to edit commands for the friendly craft. The one-person crew data are especiaily
interesting because these crews often had to deal with simultanous demands for both scout and
friendly craft control activity. The experimenters expected the autopilot to play an important role in
allowing one-person crews to effectivcly cope with these simultaneous task demands. Specifically, i
was expected that one-person crews would use the strategy of engaging the autopilot before text
editing sessions and resuming manual control after editing. This strategy would allow the crews to
exploit the superiority of manual control over automatic control (in terms of speed and fuel usage
efficiencies) when there were no demands for text editing, but to also achieve the benefits of autopilo
control when attention was diverted from manual control by the presence of a secondary task.

Contrary to expectation, none of the five crews used this strategy to select control modes. Two
crews used the autopilot almost exclusively, one crew used manual control almost exclusively, and
two crews used both manual and automatic modes to a substantial degree. Although these two crews
alternated control modes, the selection of control mode was independent of demands for text editing
friendly craft commands. These crews were no more likely to use automatic control when editing
than when not editing. The rationale behind mode switching for these two crews cannot be clearly
determined with the available data. However, informal observations suggested that manual control
was more consistently used when tight navigation constraints were present. The resolution of the



cursor on the map display did not always allow subjects to specify a waypoint near enough to the
location of home base or a piece of cargo so that loading and unloading could be effectively
performed. Other factors may have also contributed to these crews’ mode selection strategies.

The most striking result was that no crew used the autopilot as a task-offload aid in the way its
designers intended. As is the case with many human-machine interaction problems, in retrospect it i
not difficult to hypothesize factors contributing to this finding. Most importantly, the time to
program and engage the autopilot was relatively long with respect to the duration of the majority of
text editing sessions. In addition, many editing sessions were of high criticality and could not be
safely delayed while the autopilot was being engaged. Berg and Sheridan (1985) also found that
subjects were reluctant to use an autopilot in an aircraft piloting simulation due to the fact that the dme
and effort necessary to engage the aiding system were not worth the benefits received.

Factors Affecting Strategy Selection

One modeling goal was to gain insight into why the autopilot in the laboratory task was not useful
as a task-offload aid. The approach used was to describe the task environment in such a way that
optimal policies for using the autopilot could be determined as a function of various design and task
context parameters. The first step was to identify a number of aid design and task context factors tha
presumably influenced the strategies developed by crews for using the autopilot. Six factors,
discussed below, appeared to influence control mode selection strategies in the present task. In other
task environments it is quite possible that a different set of factors affect strategy development.
Although the current analysis considers only design and context features relevant to the present
experimental task, the modeling approach described below could be extended in various ways to
capture other influences on strategic behavior.

The first three factors hypothesized to influence strategy selection in the laboratory task were
autopilot design features. The first was the ability of the autopilot to control the scout relative to the
crew's ability to successfully control the scout manually. Presumably, the autopilot would have been
especially auractive for crews who could not control the scout as effectively as could the autopilot. A
second factor was the autopilot engagement time. Between 5 and 10 seconds were required to
specify a waypoint with the map cursor and activate the autopilot via pushbuttons. A third potental
factor influencing autopilot usage was disengagement time. However, since the autoplilot could be
disgengaged in approximately one second, this factor was not expected to strongly contribute
towards understanding why crews did not use the autopilot as a task-offload aid.



The second three factors were features of the overall task context in which the autopilot was
placed. The first was the duration of secondary tasks that required a diversion of attention from the
piloting task. Editing sessions lasted between 5 and 15 seconds. Thus, the autopilot engagement
time was between 33% and 200% of the total time in which the autopilot would be in use under the
strategy of using the autopilot only during editing sessions. This relationship between secondary
task duration and aid engagement time almost surely had a strong influence on crews' strategies for
using (or not using) the autopilot. A second task context factor which may have affected mode
selection was the high cost associated with delaying editing sessions. Delaying a critical editing
session by the time spent engaging the autopilot increased the probability of losing the use of a
friendly craft for the remainder of the experimental session. A final task context factor considered
was the time between demands for secondary task activity. If the intervals between secondary tasks
are short relative to the duration of secondary tasks, the attractiveness of the autopilot control could
be expected to increase. Even though secondary task duration may be brief, if secondary task
demands occur at a high frequency it may be apprgpriate to use purely automatic control. This
strategy would eliminate the need for frequent antopilot engagement and disengagement, while
maintaining scout motion during the many periods during which manual control would not be
possible. The model described below was developed to investigate the role of the six factors
identified above in influencing appropriate control mode strategy and resulting system performance.

Markov Decision Process Modeling

The semi-automated, multi-task human-machine system described above was modeled as a
continuous time Markov Decision Process (MDP). A continuous time MDP consists of a set of
states, state transition rates, a set of actions available in each state, and a payoff or reward rate
associated with occupancy time in each state. Although the general MDP formulation also allows
payofTs to be associated with the execution of actions and state transitions, the model described
below associates rewards only with state occupancy durations. Use of a policy?2 (an action to be
selected in each state) induces a Markov chain associated with the MDP. An optimal policy is

ZIn this paper, the term policy is used to refer to the mathematical entity describing the actions to be
taken in each state. The term strategy is reserved to refer to the psychological construct describing
how strategic behavior is mediated. The distinction is maintained to keep separate statements about
the model and statements about the human operator. For example, although a given policy may be
optimal in the model, the corresponding strategy may not be optimal due to model simplifications,
measurement approximations, etc.
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defined to be that set of actions, one per state, that when taken maximize the reward acheived over
the lifetime of the process. Here we assume an infinite planning horizon. While system operating
time is surely finite, the assumption of an infinite horizon only has the effect of defining a steady
state policy which is unaffected by mission termination.

The goal of modeling the human-machine system as an MDP was to understand how the six aid
design and task context features combine to determine optimal policies for using the autopilot.
Associated with each policy is a strategy that could be potentially used by the human crews. The
MDP model used here has four states and the identical set of two actions associated with each state.
The actions are: 1) Select autopilot control; and 2) Select manual control. The states are: 1) Manu:
control — No editing required; 2) Autopilot control — No editing required; 3) Manual control —
Editing required; and 4) Autopilot control — Editing required. Note that taking Action 1 in States 2
or 4, and taking Action 2 in States 1 or 3 are null actions which only serve to maintain the current
control mode. A graphical representation of the MDP model is shown in Figure 2.

Note that the state space is the cross product of the set of two exogenous task states (editing
required, no editing required) and the set of the results of the two actions (select manual control,
select autopilot control). The inclusion of action related information into the state space was require:
to satisfy the Markov assumption that the current action decision can be based only upon the current
state and not on the previous action or state. Since the decision to select autopilot ar manual control
almost surely depends on the current control mode, control mode must be included in the state space
for the Markov assumption to be satisfied. A two-state model (Editing required, No editing requirec
could be used under the condition that the action decision could depend on the previous action taken
thereby violating the Markov assumption. Achieving the analytical benefits associated with
formulating this model as an MDP necessitated a larger state space.

Insert Figure 2 about here

The behavior of this MDP model with an associated decision policy is as follows. At each state
transition, an action is selected according to the decision policy. The action selected determines the
mean of the exponentially distributed state occupancy time and the next state which will be entered at
the end of that time. In addition, the action specifies the payoff which is earned per unit time in the
current state. When the transition to the new state occurs, this process is repeated based on the actio:
to be selected for the new state as given by the decision policy.



With the state space and action set as defined above, the only model components left to be
specified are the state transition rates and payoffs as a function of the action selected in each state.
The state transition diagram in Figure 2 and the transition rate and payoff information in Table |
summarize this information. As mentioned above, the implementation of a policy in conjunction witt
an MDP induces a Markov chain. A description of a few possible chains will now be given to help
explain the information given in Table 1 and the state transition diagram.

Insert Table 1 about here

Assume the process begins in State 1 (Manual control — No editing required). If Actdon 1 (Select
autopilot control) is selected, the process will continue to occupy State 1 for a mean duration of
TEngage seconds (the mean time to engage the autopilor). An earning rate of zero in the table
indicates that no payoff is earned during this interval. That is, until the autopilot takes control, the
scout does not begin to move and search the simulated world, thereby contributing nothing to
mission success during this interval. After a mean time of TEngage seconds, the process will
transition to State 2 (Autopilot control — No editing required). The process will occupy this state for
a mean duration of TNonEdit seconds (the mean time between demands for editing). Assuming
autopilot control is selected once again in this state (i.c., autopilot control is maintained), earnings of
1 unit per second are accrued due to the performance of the autopilot. After a mean time of TNonEdit
seconds, the process will transition to State 4 (Autopilot control - Editing required). Assuming a
selection of autopilot control again, earnings of 1 unit per second continue to accrue during the
editing session of mean length TEdir seconds due to the performance of the autopilot while the
operator is editing. After a mean of TEdir seconds, the process will transition back to State 2
(Autopilot control - No editing required).

Now, assume instead thar Action 2 (Select manual control) was selected from the initial state
(State 1: Manual control - No editing required). For a mean duration of TNonEdit seconds,
earnings of M units per second will accrue due to the manual control exerted by the operator. If M is
greater than 1, the operator’s performance at piloting the scout is superior to the performance of the
autopilot; if M is less than 1, the operator’s performance is inferior to the autopilot. After a mean of
TNonEdit seconds, the process transitions to State 3 (Manual control — Editing required). If manual
control is selected (maintained), no earnings are accrued for the mean TEdit seconds in which the
operator is editing and attention is diverted from the manual control task. If the operator had decided



to switch to autopilot control when the editing session was required, a penalty of P units per secon
would be paid for the mean TEngage seconds delay before editing could begin. After a mean
TEngage seconds, the process would transition from State 3 to State 4 (Autopilot control — Editing
required). At this point, the process would once again begin to accrue the 1 unit per second payoff
while the autopilot was operating and the operator was editing.

The three task environment factors (TEdir: mean editing session duration, TNonEdir. mean time
berween editing sessions, and P: the penalty for delaying an editing session) and the three autopilot
design factors (TEngage: time to engage the autopilot, TDisengage: time to disengage the autopilot,
and M: the relation of human control performance to autopilot control performance) combine to
produce an optimal policy for control mode selection. Knowledge of the way that various values of
these task and design parameters interact to produce different optimal policies for control mode
selection and atainable levels of system performance would allow the partial specification of
autopilot design criteria as a function of task context. The following section describes a sensitivity
analysis of optimal policy and performance as a function of various levels of these factors.

A

Sensitivity Analysis Approach

A policy improvement algorithm (Howard, 1960) was used to identify the optimal decision policy
and maximum level of expected performance as a function of the six model parameters mentioned
above. A description of the algorithm used to solve the present problem and is provided in Appendix
1. The purpose of the sensitivity analysis was to identify how the optimal policy for mode selection
and attainable system performance changes as a function of various levels of the six context and aid
design parameters.

To keep the scope of the analysis manageable, three of the six parameters were chosen as the
focus of the sensitivity analysis. These were: 1) P = the penalty for delaying text editing sessions;
2) M = manual control performance as a percentage of autopilot control performance; and 3)
TEngage = the time to program and engage the autopilot. Thus, the three remaining factors were
held constant throughout the analysis. These were: 1) TEdit = mean editing session duration (10
seconds); 2) TNonEdit = mean time between editin g sessions (40 seconds); and 3) TDisengage =
mean time required to disengage the autopilot (1 second).

The choice of the factors to be varied was partially motivated by the initial hypotheses about why
crews did not use the autopilot as a task-offload aiding device. The primary hypotheses concerned
the crews' manual control abilites, the relatively long autopilot engagement time, and the penalties
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associated with delaying editing sessions. Thus, the sensitivity analysis was designed to focus on
how these three factors interact to produce alternate optimal policies. The values of the three fixed
factors were selected to achieve reasonable agreement with the properties of the laboratory task
environment. ’ '

The value of M (human manual control performance as a percent of autopilot control performance
was varied between 50% and 250%. Lower levels of M indicate manual control performance worse
than autopilot control, M = 100% indicates equality of performance, and high values of M indicate
manual control performance superior to the autopilot. The theoretically highest value of M obtainabl;
in the present experiment is near 200%. This would be earned by an operator capable of flying at ful
speed, as opposed to the autopilot ceiling of 75% with twice the fuel usage of manual control.

The value of TEngage (the mean time required to engage the autopilot) was varied from 0.5
seconds to 10.0 seconds. An approximate figure for the mean time to engage the autopilot in the
laboratory task is 8 seconds. Values of TEngage much lower than this figure were used in the
sensitivity analysis to identify by how much engagement time must have been reduced in order to
have increased the attractiveness of the strategy of switching to autopilot control during editing
sessions.

The value of P (the per second penalty for delaying editing sessions) was varied between 0.0 and
10.0. The unit of measurement of P is equivalent to the units on the autopilot and manual control
earning rates. Thus, P = 5.0 indicates that the cost per second of delaying an editing session is five
times as great as the reward per second of autopilot control of the helicopter. As could be expected,
P could not be precisely measured in the laboratory task. However, it did seem clear that there was a
sense in which the costs of delaying editing sessions did trade off with the costs of scout control. In
this paper, though, P is perhaps best thought of as an ordinal measure of editing session criticality.
Issues related to the measurement problems underlying the present modeling approach are discussed
in the final section of this paper.

Modeling Results

The results of the sensitivity analysis are graphically presented in Figures 3, 4, 5 and 6. Figures
3, 5 and 6 depict two-way policy sensitivity analyses as a function of autopilot setup time and manual
control performance. Each of these two-way analyses was performed at a different level of P, the
per second penalty of delaying editing sessions by the time required to engage the autopilot. Figure 4
shows the system performance that would result from using the optimal policies shown in Figure 3.
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The results corresponding to P = 0.0 (no penalty for delaying editing sessions) appear in Figures
3and 4. A P value of zero would represent editing sessions which are entirely self paced and no
costs are associated with delays. An example of such a session would be the preparation of a action
command which would not be executed by the friendly craft until some later time. Figure 3 shows
the optimal mode selection policy as a function of autopilot setup time (harizontal axis) and manual
control payoff as a percent of autopilot control payoff (vertical axis). Four mode control policies
were identified by solving the MDP via the method discussed in the appendix: 1) Always use the
autopilot; 2) Always use manual control; 3) Use manual control from session initiation until the firs;
editing session is required, then switch to the autopilot for the rest of the session; and 4) Use the
autopilot when editing is required and use manual control otherwise. Recall from the experimental
results that no subjects used strategies corresponding to Policies 3 or 4.

Insert Figures 3 and 4 about here
k4

Policy 1 (always use the autopilot) is always optimal if autopilot control is superior or equal to
manual control regardless of the autopilot setup delay or editing session criticality. This should come
as no surprise for there is no advantage to using manual control in this situation. Figure 4 indicates
that this policy will eam an average of 1 unit per second at steady state.

Policy 4 (use the autopilot when editing, manual control otherwise) is optimal if manual control is
superior to autopilot control and the penalty for editor delay is small. When manual control is
superior to autopilot control and editor delay is large, Policy 2 (always use manual mode) is optimal.
Over intermediate levels of autopilot engagement time, engagement time and manual control
performance interact to determine the optimal policy. Qualitatively, Policy 2 is optimal for moderate
engagement times (4-6 seconds) only if manual control performance is excellent (greater than 180%
of autopilot performance). For these same moderate engagement times, Policy 4 is optimal if manual
control is in the intermediate range (berween 110% to 170% of autopilot control performance).

Thus, high levels of manual control performance and long autopilot programming and
engagement times combine to make pure manual control an attractive strategy. It should be
remembered that under this policy no eamnings accrue while the operator is using the text editor. The
cost associated with long engagement times in this case can be found by reference to the Figure 4. If
- manual control performance is 140% as great as automatic control performance, the optimal policy
depends upon autopilot setup time. If setup time is one second, the optimal policy is to engage the
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autopilot when editing is required and use manual control otherwise. This policy has a steady state
earning rate of 1.3 units per second. If autopilot engagement time is greater than seven seconds, the
optimal policy is to always use manual control. The steady state earning rate of this policy is 1.1
units per second. Therefore, the 6 second increase in autopilot engagement time results in an
approximate 15% decrease in overall system performance.

Higher criticalities for editing session delays (Figures 5 and 6) serve to decrease the size of the
parameter space in which Strategy 4 is optimal. In the highest criticality case (P = 5, Figure 6), the
only case in which a switching strategy is optimal is if the autopilot setup time is one second or less.
At this level of editing session criticality, virtually the only two optimal policies are pure autopilot
control and pure manual control

Insert Figures 5 and 6 about here

The results of this sensitivity analysis suggest that the potential benefits of a given task-offload ai
can only be predicted with knowledge of the overall task context in which the aid is deployed. High
levels of secondary task criticality were typical of the supervisory control task upon which this
analysis is based. The results of the sensitivity analysis at high levels of editing criticality indicate
that three crews, by using strictly autopilot or strictly manual control, may indeed have been acting
appropriately given the poor sysiém design with which they were confronted. In addition, recall that
two other crews used both automatic and manual control, but mode selection was independent of
secondary task demands. Instead, it was observed that these two crews may have intermittently
engaged manual control because they could more successfully perform target acquisition by manually
piloting the scout than they could by using the autopilot. The results of the sensitivity analysis are
consistent with this observation. During normal piloting activity, crews may have recognized that
autopilot control was superior to their own manual control abilities, especially given the need to edit
friendly craft commands. Given the autopilot engagement time and the criticality of secondary tasks
in the present experiments, pure autopilot control would be most appropriate under such conditions.
During more demanding target acquisition, on the other hand, crews may have recognized that they
could more efficiently navigate to targets using manual control than they could by attempting to
specify an autopilot waypoint with the low-resolution map cursor. Under such conditions, (manual
control performance greater than autopilot performance), the sensitivity analysis results indicate that

pure manual control is most appropriate.

13



Discussion

By showing how aid design and task context factors combined in complex ways to influence
appropriate strategies for human-automation interaction, the modeling and sensitivity analysis
provided valuable insights into why none of the five crews used the autopilot as a task-offload aid
in the manner intended and expected. It is hoped that the research reported here motivates those
involved with introducing automation into human-machine systems to give explicit consideration
to understanding how operators may strategically manage their interaction with aiding systems in
an effort to keep workload and performance at acceptable levels. Perhaps most importantly, the
present research emphasizes the need to appreciate the critical role played by the overall task
context in which aids are deployed. High levels of technical performance and reliability are
surely necessary attributes of any automated system considered for the operational environment.
These properties are far from sufficient, however,ssince it is only through the operator’s strategy
for managing automation that the potential benefits of aiding systems are realized in system
performance.

In closing, it is of interest to discuss a number of methodological issues pertinent to both
evaluating the present research and to extending it to operational environments. Of perhaps
greatest importance are issues concerning the appropriateness of the style of modeling presented
(normative), and the measurement pibblcms that would be confronted if this modeling approach
were to be applied to a more complex task environment than the one studied here.

One criticism sometimes levied against normative modeling, and often rightly so, is that we
require knowledge of what operators will do, rather than what they should do. However, in
many situations, and certainly those in which descriptive models are lacking, an understandin g of
normative behavior can be an important first step toward the prediction of actual behavior. In
many human-machine systems, operators gain skill over an extended period of time through an
ongoing process of productive adaptation to environmental and goal structures. This long term
adaptation process, rather than any presumed ability for optimality-secking decision-making, is
the mechanism that often brings skilled behavior in line with task goals. Note that the present
model was specifically nor advanced as a process account of strategy development or use.
Rather, the aim was to identify what behaviors would be exhibited if operators had become
productively adapted to their task environments. Knowledge of limitations in human adaptivity,
and thereby knowledge of expected behavioral deviations from optimality, is surely necessary for
the development of descriptive models capable of accurate performance prediction. However, it
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is difficult to make the argument that aids should be designed in such a way that they do not assist
the effectively adapted operator, as was the case with the aid design in the present experiment.
Normative modeling helped to understand why unexpected behavior was observed. A more
effective autopilot design would almost surely have resulted if modeling ‘and sensitivity analysis
were conducted prior to system design.

A second, and related, methodological issue central to the appropriateness of the current
modeling approach concerns the measurement problems associated with parameter identification.
The style of modeling used here required numerical estimation of a number of factors that were
difficult to quantify. The penalty for delaying secondary tasks is one such example. It could be
expected that such measurement problems would only multiply if the present modeling approach
was applied to an existing operational context, such as an aircraft flight deck ar air traffic control.
One potential criticism of the present approach is that it may require quantification of subjective
factors such as task criticality and payoff rates far various control activities. However, this
criticism only takes force if alternative, qualitative methods are available which do justice to the
apparent richness of subjective assessment but still provide explicit and defensible techniques for
predicting how a complex set of factors will combine to influence behavior. Such tools are
currently in short supply. As a result, these predictions are typically left to either designers’
intuitions or to costly, high-fidelity simulation.

It is our observation that the problems involved in describing and measuring environmental
complexity contribute as much, and in some cases more, to our inability to predict skilled
behavior in complex systems as does our lack of knowledge of the psychological mechanisms
involved. Even if we had the ideal models of the relevant psychological processes, this
knowledge could not be applied to performance prediction without equally good models of the
environmental structures to which skilled behavior must be sensitive. The research reported here
described a method for environmental description that allowed predictions of one type of behavior
to be made in a relatively straightforward fashion. Other techniques for describing task
environments are surely necessary to capture other influences on behavior. Successful
performance prediction requires techniques for environmental modeling that are just as rich,
precise, and formal as the techniques used to model the human operator. Until the time when
such environmental models are available, the most economical representation of operational
environments will continue to be high-fidelity simulations, or perhaps even the operational
environments themselves. We suggest that the problem of measuring and describing
environmental complexity deserves increased artention by those involved with applying
psychological principles to the design of complex work environments.
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Figure Captions

Figure 1. Experimental apparatus configured for a two-person crew. For the one-person crew
the pilot's workstation and the map display were moved toward the editor and the button panel in
front of the map display was removed.

Figure 2. State transition diagrams for the MDP model. The network at the top indicates the state
transitions caused by selecting autopilot control upon entering each state. The lower nerwork
shows the state transitions caused by selecting manual control upon entering each state.
Transition rates shown by the parameters on each arc represent the mean time before the indicated
state transition occurs.

N
Figure 3. Sensitivity analysis results for P =0. P is the per second penalty for delaying editing
sessions, TEngage is mean autopilot engagement time and M is manual control performance as a
percent of autopilot performance. The entry in each cell shows the optimal policy for managing
control modes given the associated parameter values.

Figure 4. Sensitivity analysis results for P = 0 showing the levels of system performance that
would result from using the optimal policies shown in Figure 3.

Figure 5. Sensitivity analysis results for P = 2. See Figure 3 caption for explanation.

Figure 6. Sensitivity analysis results for P = 5. See Figure 3 caption for explanation.
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Appendix 1

The method used to formulate and solve the Markov Decision Process presented in this paper is
provided below. The policy improvement algorithm of Howard (1960) is described. In addition,
a number of terms and concepts from Cinlar (1975) and are used.

Specifying the Markov Decision Process
The Markov Decision Process (MDP) is defined with a set of states, S;, ({ =1, N) and a set of
actions (or decisions) available in each state. In our example, the states are defined as follows:

1 = Manual control mode, no editing required
S$2 = Automatic control mode, no editing required
§3 = Manual control mode, editing required

S4 = Automatic control modg, editing required

and the decisions available in each state S; are denoted d; where:

d; = 1 if autopilot control is selected in S;, and
d; = 2 if manual control is selected in S;

We then define a decision policy D_tp be the vector (dy, dy, d3, dy) indicating the action to be taken
in each state. For example, D = (1,1,2,2) is the policy of selecting autopilot control in States 1 and
2 and manual control in States 3 and 4. For notational convenience, let us also write this decision
policy as Dg41,42.43.44. Thus, the example policy above becomes Dy 122.

Associated with each decision policy are a state tranisition matrix Q, a transition rate matrix A,
and an earnings or reward vector r. The state transition matrix Q indicates the probability that the
process will move to S; at the next state transition given the process is in S; under the indicated
decision policy. For example, the diagram at the top of Figure 2 indicates the state transitions
assoicated with the policy Dy,),1,1 (selecting autopilot control in each state). As indicated in the
diagram, the state transition matrix associated with this policy is:

0100
Q1111=3001
10
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Thus, under policy D,1,1,1, State 2 always follows State 1, State 4 always follows State 2, State 4
always follows State 3, and State 2 always follows State 4.

Use of a given policy also determines the transition rate matrix A, which specifies the rates with
which the system moves from state to state under the policy. Table 1 provides the transition rate
information with which we construct the transition matrix for a given policy. Using the same
policy as before, Dy,1,1,1, for example, the transition matrix A is constructed from the the rows in
Table 1 associated with the selection of automatic mode in each state. The entries of the A matrix
are simply the inverses of the mean state occupancy times given in the table (see below). (Note:
For simplicity of presentation Table 1 uses zeros to represent transition rates that can be considered
to have infinite values because these transitions cannot occur - inverses of these values result in
zero entries in the A matrix as seen in the example below). For example, letting TEngage = 10s,
TNonEdit = 40s, and TEdit = 8s, the transition matrix under this policy is:

[:L 1L g o]

10 1
0 0o L

AL =

vdoed, ;1-
o100

| 0 0 3

B
8

(~ ]

One can interpret the off-diagonal entries, ajj, in the A matrix as follows. In a brief time interval
a process currently in State § will move to State j with probability a;; dt (i # j). Thus, the times
between transitions from State i and State J are exponentially distributed random variables with

L
parameter g;. The expected value of these times is given by a;; from the properties of the
exponential distribution. In addition, we see thar the times of state transitions define a Poisson
process. The diagnonal elements ajj are defined as:

N
ajj = Z i
inf

Thus, each of the Tows of A sum to zero, as is the case with our example presented above. The
transition rate matrix A is also termed the generator matrix associated with the Markov process
(Cinlar, p. 256).

Finally, an eaming or reward vector is also associated with each decision policy. The model
used in this paper only associated rewards with state occupancy durations, although a formulation
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allowing rewards to also be associated with state transitions is also available (e.g., see Howard,
pp- 104-106). For the current problem, the rightmost column in Table 1 indicates the reward rates
(earnings per unit time) associated with taking each action in each state. Using the same policy as
before, the relevant information is once again composed of the rows in the table associated with the
selection of automatic mode in each state. Assuming P (the per second penalty for delaying editing
sessions) is 5, the reward vector is:
0
r.1,1.1 =L§J

Definition of the states, action sets available per state, state transition and transition rate matrices
for each policy, and the reward vectors completely specifies the Markov Decision Process.
Recurrent Chains and Ergodic Policies v

We require a few additional concepts before describing the method used to solve for the optimal
decision policy.

A recurrent chain of a Markov process is a set of states connected by possible transitions such
that the process moves from state to state within this set, but never moves outside this set
(Howard, p. 13). A Markov process may have only one recurrent chain and is thus called a single-
chain process. In this case there is Some non-zero probability that the process will occupy any of
the N states as time approaches infinity. In other cases, however, after sufficient time the process
may make transitions only within certain subsets of states. Once it has entered one of these
subsets, or recurrent chains, it is forever trapped there. If there are more than one such subsets of
states, the process is a multi-chain Markov process. For example, the Markov process defined by
using policy Dy,1,1,1 in our example is a single-chain process. As can be seen by the top network
in Figure 2, over time this process will visit each of the four states with non-zero probability.

Consider, however, policy D, ;2. Under this policy, manual mode is selected (maintained)
in each state in which manual mode is already active, and automatic mode is selected (maintained)
in each state in which automaric mode is already active. This policy gives rise to two recurrent
chains. If the process starts in States 1 or 3 it will forever continue to occupy one of these two
states, and if the process starts in States 2 or 4 it will only make transitions between these two
states. Thus, depending upon the policy selected, the present model has the capacity to exhibit
both single-chain and multi-chain behavior. It is important to recognize the potential for multi-
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chain behavior because multi-chain decision processes require slightly more complex solution
methods than do single-chain processes, as will be seen below.

An ergodic policy is one that defines a single recurrent chain. Policy Dy 1 is therefore an
ergodic policy whereas policy D41 7 is not. The solution method presented below can be used
for processes which have both ergodic and non-ergodic policies. A slightly simpler solution
method capable of handling processes with only ergodic policies can be found in Howard (pp. 109-
110).

Solving for an Oprimal Policy

The goal is to find the policy D* which maximizes the reward received over the lifetime of the
process. For the present problem, there are only 24 = 16 different policies, so a fully enumerative
solution method would not be expensive. However, problems with large state and action sets or
the need for extensive sensitivity analysis may require mare efficient solution methods. Below we
describe the policy improvement algorithm. For a derivation of this algorithm and a proof of its
convergence properties see Howard (Chapter 8).

Define vi(t) to be the expected total reward eamed by a given policy over a time t given the
process starts in State i. Also let g; be the gain of a given policy, which indicates the average
reward earned by the policy per unit time. For larget,

vi(t) = tg; +v;

That is, the expected total reward eamned in time t, given an initial State f, is composed of two
separable contributions. The first, tg;, represents the average per-unit-time earnings of the policy,
while the second, v;, represents earnings due specifically to starting the process in State i. The
reason the gain term is indexed by initial state is that the different recurrent chains may have
different average reward rates. Within a given recurrent chain, however, the values of all the gi's
for the states within the chain will be equal, and thus independent of initial state.

The evaluation of a given policy is accomplished by solving the following pair of systems of

equations:

N
2 aigj=0
j=l

N
gi=ri+ z aijvj
j=1
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fori=1 toN,andbysettingthevalueofonev;ineachmcun-emchaintom. The variables g;;
and r; are as defined above, This calculation is called the policy evaluation step of the solution
process. Solving for each of the g;'s and vj's in these equations determines the expected total
reward of the policy specified by the a;s and the r{'s. One of the vj's is set to zero in each
recurrent chain so that this underdetermined system of linear equations can be solved. This step is
appropriate since we are only concerned with reiazive values of the vj's.

To begin the algorithm, we simply choose any policy to serve as an intial guess and solve the
equations above to determine the value of this policy. Once values for the g;'s and Vj's are found
for this intial policy, we can then enter the policy improvement step of the solution process. Todo
0, for cach state /, find the decision or action # that maximizes:

g: ajg;
J=1

and make this action the new decision in State ;. If the above quantity results in ties, the new
action must be selected on the basis of the relative values, Vj's, rather than on the basis of the gains

alone. In such a case, find the decision or action k in State { that maximizes:

e 3 dy,
j=1
and make this action the new decision in State ;. If the new set of actions selectad according to this
process are identical with the actions of the previous policy, the algorithm terminates and the final
set of actions is the optimal policy. If any action was changed during the policy improvement step,
re-enter the policy evaluation step again and recalculate the v;'s and g's. The process then cycles
until convergence is found.

Checking the Distributiong] Assumptions

The approach described above assumes that stare occupancy times are random variables that can
be approximately described by the exponential distribution. If this assumption is unreasonable for
a given application, extensions to the present approach are available that allow occupancy times to
take on arbitrary distributions (c.g., see Heyman and Sobel, 1984). In most cases, though, these
extensions result in the need for more complex analytical and computational solution methods. In
many cases, though, occupancy times can be approximated by the exponential distribution, and in
cases where this is not appropriate simulation may well be the most efficient solution technique.

Given one would like to apply the approach presented in this paper, a technique is needed to
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determine the degree to which the exponential assumption holds. Cinlar’s Theorem 5.21 (p. 266)
can be used to generate a very simple method for this purpose.

Assume one is observing a human operator performing a sequence of tasks, and the goal is to
determine whether the task durations can be approximated with the exponential distribution.
Generate a series of sampling times, To, Ty, T3, ... Ty in such a way that the lengths of the
intervals Ty - To, T2 - T, ..., Ty - T-1 are exponentially distributed random variables with a fixed
parameter. This process can be performed quite simply with the aid of a pseudo-random number
generator. Observe the operator until time Ty, and record the number of occurences of the operator
performing each of the different tasks at each time T;. Afterward calculate the fraction of
occurences the operator was observed performing for each task. In addition, record the percentage
of time the operator was performing each of the tasks during the entire sampling interval. If the
fraction of occurences of the operator performing a given task when observed at the sampling times
is approximately equal to the percentage of time the operator was performing that task over the
duration of the entire sampling interval, then the assumption of exponentially distributed task
durations is probably reasonable.
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Always use sumpilot control

Always use mannal conusl

Use manual before first editng, then aumpilot

Use auwpilot when editing, otharwise manual

Policy | Definition
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